Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Journal of Southern Medical University ; (12): 213-218, 2023.
Article in Chinese | WPRIM | ID: wpr-971517

ABSTRACT

OBJECTIVE@#To establish a simple, low-cost and time-saving method for primary culture of mature white adipocytes from mice.@*METHODS@#Mature white adipocytes were isolated from the epididymis and perirenal area of mice for primary culture using a modified mature adipocyte culture method or the ceiling culture method. The morphology of the cultured mature adipocytes was observed using Oil Red O staining, and the cell viability was assessed with CCK8 method. The expression of PPARγ protein in the cells was detected with Western blotting, and the mRNA expressions of CD36, FAS, CPT1A and FABP4 were detected using RT-qPCR.@*RESULTS@#Oil Red O staining showed a good and uniform morphology of the adipocytes in primary culture using the modified culture method, while the cells cultured using the ceiling culture method exhibited obvious morphological changes. CCK8 assay showed no significant difference in cell viability between freshly isolated mature white adipocytes and the cells obtained with the modified culture method. Western blotting showed that the freshly isolated adipocytes and the cells cultured for 72 h did not differ significantly in the expression levels of PPARγ protein (P=0.759), which was significantly lowered in response to treatment with GW9662 (P < 0.001). GW9662 treatment of the cells upregulated mRNA expressions of CD36 (P < 0.001) and CPT1A (P=0.003) and down-regulated those of FAS (P=0.001) and FABP4 (P < 0.001).@*CONCLUSION@#We established a convenient and time-saving method for primary culture mature white adipocytes from mice to facilitate further functional studies of mature adipocytes.


Subject(s)
Male , Mice , Animals , Adipocytes, White/metabolism , PPAR gamma/metabolism , RNA, Messenger , Cell Differentiation , 3T3-L1 Cells
2.
Electron. j. biotechnol ; 50: 53-58, Mar. 2021. graf, tab, ilus
Article in English | LILACS | ID: biblio-1292393

ABSTRACT

BACKGROUND: Lycium barbarum (also called wolfberry), a famous Chinese traditional medicine and food ingredient, is well recognized for its significant role in preventing obesity; however, the molecular mechanisms underlying its preventive effects on fat accumulation are not well understood yet. The aim of this study was to determine the effects and mechanism of Lycium barbarum polysaccharides (LBP) on the proliferation and differentiation of 3T3-L1 preadipocytes. MTT was used to detect the proliferation of 3T3-Ll preadipocytes. Oil red O staining and colorimetric analysis were used to detect cytosolic lipid accumulation during 3T3-L1 preadipocyte differentiation. Real-time fluorescent quantitative PCR (qPCR) technology was used to detect peroxisome proliferator-activated receptor c (PPARc), CCAAT/enhancer-binding protein a (C/EBPa), adipocyte fatty-acid-binding protein (aP2), fatty acid synthase (FAS), and lipoprotein lipase (LPL) expression. RESULTS: The concentration of LBP from 25 to 200 lg/mL showed a tendency to inhibit the growth of preadipocytes at 24 h, and it inhibited the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner. In the preadipocytes treated with 200 lg/mL LBP, there were reduced lipid droplets in the cytoplasm, and its effect was opposite to that of rosiglitazone (ROS), which significantly reduced the PPARc, C/EBPa, aP2, FAS, and LPL mRNA expression of adipocytes. CONCLUSIONS: LBP exerts inhibitive effects on the proliferation and differentiation of 3T3-L1 preadipocytes and decreases the cytoplasm accumulation of lipid droplets during induced differentiation of preadipocytes toward mature cells. Above phenomenon might link to lowered expression of PPARc, C/EBPa, aP2, FAS, and LPL after LBP treatment. Thus, LBP could serve as a potential plant extract to treat human obesity or improve farm animal carcass quality via adjusting lipid metabolism.


Subject(s)
Polysaccharides , Plant Extracts , Adipocytes , Lycium/chemistry , Cell Differentiation , 3T3-L1 Cells , Cell Proliferation , Adipogenesis , Real-Time Polymerase Chain Reaction/methods
3.
Chinese Journal of Biotechnology ; (12): 1386-1394, 2020.
Article in Chinese | WPRIM | ID: wpr-826838

ABSTRACT

We used CRISPR/Cas9 to delete plin1 of 3T3-L1 preadipocyte, to observe its effect on lipolysis in adipocytes and to explore regulatory pathways. We cultured 3T3-L1 preadipocytes, and the plin1 knockout vectors were transfected by electroporation. Puromycin culture was used to screen successfully transfected adipocytes, and survival rates were observed after transfection. The optimized "cocktail" method was used to differentiate 3T3-L1 preadipocytes. The glycerol and triglyceride contents were determined by enzymatic methods. The changes in lipid droplet form and size were observed by Oil red O staining. The protein expression of PLIN1, PPARγ, Fsp27, and lipases was measured by Western blotting. RT-PCR was used to measure the expression of PLIN1 and lipases mRNA. After the adipocytes in the control group were induced to differentiate, the quantity of tiny lipid droplets was decreased, and the quantity of unilocular lipid droplets was increased and arranged in a circle around the nucleus. Compared with the control group, the volume of unilocular lipid droplets decreased, and the quantity of tiny lipid droplets increased after induction of adipocytes in the knockout group. The expression of PLIN1 mRNA and protein in the adipocytes was significantly inhibited (P<0.05); glycerol levels increased significantly (0.098 4±0.007 6), TG levels decreased significantly (0.031 0±0.005 3); mRNA and protein expression of HSL and ATGL increased (P<0.05); PPARγ and Fsp27 expression unchanged in adipocytes. The above results indicate that the knockout of plin1 enhances the lipolysis of 3T3-L1 adipocytes by exposing lipids in lipid droplets and up-regulating lipases effects.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipocytes , Metabolism , CRISPR-Cas Systems , Gene Knockout Techniques , Lipase , Metabolism , Lipolysis , Genetics , Perilipin-1 , Genetics , Metabolism
4.
Journal of Nutrition and Health ; : 17-25, 2019.
Article in Korean | WPRIM | ID: wpr-740553

ABSTRACT

PURPOSE: Obesity is a major health problem of global significance because it is clearly associated with an increased risk of health problems, such as nonalcoholic fatty liver disease (NAFLD), diabetes, cardiovascular diseases, and cancer. Lonicera caerulea (LC) originates from high mountains or wet areas and has been used as a traditional medicine in northern Russia, China, and Japan. LC contains a range of bioactive constituents, such as vitamins, minerals, and polyphenols. This study examined the anti-obesity effects of LC during differentiation in preadipocytes. METHODS: The cell viability assay was performed after the differentiation of 3T3-L1 cells for 7 days. Oil Red O staining was used to visualize the changes in lipid droplets in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs). The mRNA expression of obesity-related genes was determined by quantitative real-time PCR. RESULTS: According to the results of Oil Red O staining, the lipid levels and size of lipid droplets in the adipocytes were reduced and the LC extract (LCE, 0.25–1 mg/mL) markedly inhibited adipogenesis in a dose-dependent manner. The treatment of LCE also decreased the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), and sterol regulatory element binding protein 1 (SREBP1) in 3T3-L1 cells. Western blot analysis showed that the PPARγ, C/EBPα, and SREBP1 protein levels in both 3T3-L1 and MADSC were reduced in a dose-dependent manner. CONCLUSION: These results suggest that LCE can inhibit adipogenic differentiation through the regulation of adipogenesis-related markers.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipocytes , Adipogenesis , Blotting, Western , Cardiovascular Diseases , Cell Survival , China , Japan , Lipid Droplets , Lonicera , Medicine, Traditional , Minerals , Miners , Non-alcoholic Fatty Liver Disease , Obesity , Peroxisomes , Polyphenols , Real-Time Polymerase Chain Reaction , RNA, Messenger , Russia , Stem Cells , Sterol Regulatory Element Binding Protein 1 , Vitamins
5.
Keimyung Medical Journal ; : 1-10, 2019.
Article in English | WPRIM | ID: wpr-786192

ABSTRACT

Differentiation of preadipocyte, also named adipogenesis, leads to the phenotype of mature adipocyte that is filled with many lipid droplets. Excessive lipid accumulation in adipocytes leads to the development of obesity. In this study, we investigated the effect of 11 different natural compounds on lipid accumulation during the differentiation of 3T3-L1 preadipocytes into 3T3-L1 adipocytes. Strikingly, among the natural compounds, cryptotanshinone at 10 µM most strongly reduced triglyceride (TG) contents in 3T3-L1 cells after 8 days of the differentiation. Furthermore, cryptotanshinone at 10 µM significantly suppressed lipid accumulation in 3T3-L1 cells after 8 days of the differentiation. Cryptotanshinone at 1 to 10 µM tested did not affect the survival of 3T3-L1 cells after 8 days of the differentiation. On mechanistic levels, cryptotanshinone time-differentially decreased the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during the 3T3-L1 cell differentiation. Taken together, these findings demonstrate that cryptotanshinone inhibits lipid accumulation in differentiating 3T3-L1 cells, which appears to be mediated through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, Perilipin A, and STAT-3.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Lipid Droplets , Obesity , Peroxisomes , Phenotype , Phosphorylation , Transducers , Triglycerides
6.
Journal of Nutrition and Health ; : 250-257, 2019.
Article in Korean | WPRIM | ID: wpr-765985

ABSTRACT

PURPOSE: Aster glehnii (AG) and Aster yomena (AY) are medicinal plants that belong to the family Compositea and grow widely in Korea. Plants in the genus Aster have been used to treat snakebite wounds or bruises in oriental medicine. This study compared the effects of anti-oxidants and anti-adipocyte differentiation according to the species (the aerial parts of AG and AY). METHODS: AG and AY were extracted using 70% ethanol (−E) and water (−W) at room temperature. The anti-oxidant activities were measured by total phenol contents (TPC), total flavonoid contents (TFC), DPPH and ABTS+ assay. In addition, correlation analysis was performed for the anti-oxidant compounds and effect. The level of anti-adipocyte differentiation was assessed using an oil red O assay on pre-adipocytes. RESULTS: AG-W showed higher TPC (6.92 µg/mL) and AG-E presented higher TFC (8.22 µg/mL) than the other extracts. Furthermore, AG-E exhibited higher radical scavenging activity in the DPPH and ABTS+ assay (IC50: 104.88 and 30.06 µg/mL). In the cytotoxicity assay, AG and AY extracts at concentrations less than 100µg/mL were non toxic. AG-W reduced the lipid accumulation of 3T3-L1 cells significantly after differentiation (70.49%) compared to the other extracts. CONCLUSION: These results show that the water extract of AG has anti-oxidant effects and reduces the differentiation of 3T3-L1 cells. Therefore, AG has utility as a functional food material for its anti-oxidant activities and ability to prevent lipid accumulation.


Subject(s)
Humans , 3T3-L1 Cells , Adipocytes , Antioxidants , Contusions , Ethanol , Functional Food , Korea , Medicine, East Asian Traditional , Phenol , Plants, Medicinal , Snake Bites , Water , Wounds and Injuries
7.
Natural Product Sciences ; : 341-347, 2019.
Article in English | WPRIM | ID: wpr-786425

ABSTRACT

Luffa cylindrica (LC) is a very fast-growing climber and its fruit have been considered as agricultural wastes. We conducted to check the comparative qualities of ethanol solvent extraction (LCE) and supercritical carbon dioxide extraction (LCS) of L. cylindrica fruit and seed. LCS had higher antioxidant and polyphenol contents than LCE. LCS were significantly increased peroxisome proliferator-activated receptor (PPAR)-a and involucrin expression as epidermal differentiation marker in 3D skin equivalent model. LCS also showed antimicrobial activity against Staphylococcus aureus, a causative bacteria in atopic dermatitis. In addition, LCS inhibited the adipocyte differentiation of 3T3-L1 cells. When treated with the extract at a concentration of 100 µg/mL, the Wnt/β-catenin pathway reporter luciferase activity of HEK 293-TOP cells was increased approximately by 2-folds compared to that of the untreated control group. These results indicate that L. cylindrica supercritical carbon dioxide extract may serve as a cosmeceutical for improving skin barrier function and the treatment of obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Bacteria , Carbon Dioxide , Carbon , Dermatitis, Atopic , Ethanol , Fruit , Luciferases , Luffa , Obesity , Peroxisomes , Skin , Staphylococcus aureus
8.
International Journal of Oral Biology ; : 29-35, 2018.
Article in Korean | WPRIM | ID: wpr-740060

ABSTRACT

It is noted that chalcone derivatives have characteristic diverse pharmacological properties, and that precise evidence has been growing that they could regulate a tumor necrosis factor-α (TNF-α) induced insulin resistance. The purpose of the present investigation is to elucidate the effects of the identified chalcone derivatives on adipogenesis, and to find the underlying mechanism of action in that case. Consequently, we first investigated whether the chalcone derivatives could affect the identified PPARγ-induced transcriptional activity on the proliferator-activated receptor response elements (PPRE) at target promoters, and find that trans-chalcone most significantly increased the PPARγ-induced transcriptional activity. Additionally, we confirmed that there were up-regulatory effects of trans-chalcone during the adipogenesis and lipid accumulation, and on the mRNA of adipogenic factors in 3T3-L1 cells. Next, we examined the effect of trans-chalcone on the inhibition induced by TNF-α on adipogenesis. To that end, we noted that the treatment with trans-chalcone attenuated the effect of TNF-α mediated secretion of various adipokines that are involved in insulin sensitivity. For this reason, we noted that this study clearly demonstrates that trans-chalcone enhanced adipogenesis, in part, by its potent effect on PPARγ activation and by its reverse effect on TNF-α.


Subject(s)
3T3-L1 Cells , Adipogenesis , Adipokines , Chalcone , Insulin Resistance , Necrosis , Response Elements , RNA, Messenger
9.
São Paulo; s.n; s.n; 2018. 117 p. graf, tab, ilus.
Thesis in Portuguese | LILACS | ID: biblio-883276

ABSTRACT

A obesidade está associada a um processo inflamatório crônico de baixa intensidade e representa um dos fatores de risco para o desenvolvimento de uma série de comorbidades. A proteína TSPO está envolvida em inúmeras funções celulares, incluindo biossíntese e transporte de esteróides, transporte de porfirinas, apoptose, biossíntese do heme, processos oxidativos e imunomodulação. Ademais, a presença e a função da proteína TSPO no tecido adiposo e na inflamação ainda não estão bem estabelecidas. Deste modo, o objetivo do presente estudo foi validar a expressão e função do TSPO durante a diferenciação de células 3T3-L1, e investigar se o tratamento de adipócitos 3T3-L1 com diazepam, um benzodiazepínico de ação central (GABAA) e periférica (TSPO), é capaz de modular os efeitos inflamatórios induzidos pela incubação das células 3T3-L1 com TNF-α. Nossos resultados evidenciaram que, em nosso estudo, o tratamento de pré-adipócitos com diazepam não modulou a adipogênese. Entretanto, apesar de o diazepam per se não modular o acúmulo de triacilglicerol e a expressão gênica e protéica de PPAR-γ; em células estimuladas pelo TNF-α, o tratamento com diazepam foi capaz de reverter a diminuição da expressão gênica e protéica de PPAR-γ induzida pelo TNF-α. Ademais, o tratamento dos adipócitos com diazepam foi capaz de modular positivamente a expressão protéica de TSPO, efeito este que não observamos em células tratadas pelo clonazepam, um benzodiazepínico de ação exclusivamente central. Em resumo, os dados obtidos neste estudo, pela primeira vez, demonstram a possível relação entre as vias que controlam a sinalização de TSPO, TNF-α e PPAR-γ. Assim, nos é possível inferir que a ativação de TSPO pelo seu ligante diazepam foi capaz de modular a ativação de NF-kB induzida pelo TNF-α, promovendo, com a diminuição da lipólise e aumento da expressão gênica de TSPO e gênica e protéica de PPAR-γ, o reestabelecimento da homeostase celular, o que aumentaria a sobrevida das células, a atividade mitocondrial, e a atividade adipogênica dos adipócitos


Obesity is associated with a chronic low-grade inflammation and these represents one of the risk factors to development of other non-communicable diseases. TSPO 18 kDa is involved in several cellular functions, including biosynthesis and steroids transport, porphyrin transport, apoptosis, heme biosynthesis, oxidative metabolism and immunomodulation. Furthermore, the TSPO expression and function on adipose tissue and in the chronic low-grade inflammation have not been established. Thus, the aim of present study was to validate the TSPO expression and function on the 3T3-L1 differentiation process and to investigate whether diazepam treatment is able to modulate the TNF-α induced inflammatory effects on 3T3-L1 cells. Our results showed that diazepam treatment of preadipocytes was not able to modulate the adipogenesis. However, although diazepam treatment per se does not modulate the triacylglycerol accumulation and gene and protein expression of PPAR-γ; in TNF-α stimulated adipocytes, the treatment with diazepam was able to modulate the decreased of PPAR-γ gene and protein expression induced by TNF-α. In addition, the diazepam treatment of adipocytes was able to positively modulate the TSPO protein expression, an effect that we did not observe in cells treated with clonazepam, a central benzodiazepine ligand. In summary, the data obtained in this study, for the first time, demonstrate the possible relationship between the pathways that control the TSPO, TNF-α and PPAR-γ signaling. Thus, it is possible that the activation of TSPO by diazepam was able to modulate TNF-α-induced activation of NF-kB, promoting the reduction of lipolysis and increased of TSPO gene expression and PPAR-γ gene and protein expression, reestablishment of cellular homeostasis, which would increase cell survival, mitochondrial activity, and adipogenic activity of adipocytes


Subject(s)
Mice , Adipocytes , 3T3-L1 Cells/classification , Mitochondrial ADP, ATP Translocases , Lymphotoxin-alpha , Diazepam/agonists , Flow Cytometry/methods , Inflammation , Macrophages , Obesity/diagnosis
10.
Yonsei Medical Journal ; : 85-91, 2018.
Article in English | WPRIM | ID: wpr-742500

ABSTRACT

PURPOSE: Ascorbic acid has been reported to have an adipogenic effect on 3T3-L1 preadipocytes, while evidence also suggests that ascorbic acid reduces body weight in humans. In this study, we tested the effects of ascorbic acid on adipogenesis and the balance of lipid accumulation in ovariectomized rats, in addition to long-term culture of differentiated 3T3-L1 adipocytes. MATERIALS AND METHODS: Murine 3T3-L1 fibroblasts and ovariectomized rats were treated with ascorbic acid at various time points. In vitro adipogenesis was analyzed by Oil Red O staining, and in vivo body fat was measured by a body composition analyzer using nuclear magnetic resonance. RESULTS: When ascorbic acid was applied during an early time point in 3T3-L1 preadipocyte differentiation and after bilateral ovariectomy (OVX) in rats, adipogenesis and fat mass gain significantly increased, respectively. However, lipid accumulation in well-differentiated 3T3-L1 adipocytes showed a significant reduction when ascorbic acid was applied after differentiation (10 days after induction). Also, oral ascorbic acid administration 4 weeks after OVX in rats significantly reduced both body weight and subcutaneous fat layer. In comparison to the results of ascorbic acid, which is a well-known cofactor for an enzyme of collagen synthesis, and the antioxidant ramalin, a potent antioxidant but not a cofactor, showed only a lipolytic effect in well-differentiated 3T3-L1 adipocytes, not an adipogenic effect. CONCLUSION: Taking these results into account, we concluded that ascorbic acid has both an adipogenic effect as a cofactor of an enzymatic process and a lipolytic effect as an antioxidant.


Subject(s)
Animals , Female , Mice , 3T3-L1 Cells , Adipocytes/drug effects , Adipocytes/metabolism , Adipogenesis/drug effects , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Body Composition/drug effects , Body Weight/drug effects , Cell Differentiation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Lipolysis/drug effects , Ovariectomy , Rats, Sprague-Dawley
11.
Nutrition Research and Practice ; : 494-502, 2018.
Article in English | WPRIM | ID: wpr-718587

ABSTRACT

BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4℃ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 (0–75 µg/mL) or its fractions (0–50 µg/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.


Subject(s)
Humans , 3T3-L1 Cells , Acetyl-CoA Carboxylase , Adipocytes , Adipogenesis , AMP-Activated Protein Kinases , Apoptosis Regulatory Proteins , Apoptosis , Capsicum , Lipid Metabolism , Lymphoma , Obesity , Phosphorylation , Sterol Regulatory Element Binding Protein 1 , Water
12.
Pakistan Journal of Pharmaceutical Sciences. 2017; 30 (4): 1335-1339
in English | IMEMR | ID: emr-189702

ABSTRACT

A new naturally occurring dibenzylbutyrolactone lignan named isocubebinic ether has been isolated from Knema patentinervia. The structure was established by spectroscopic methods, which include Ultraviolet, Infrared, Nuclear Magnetic Resonance and Mass Spectrometry. The compound showed activity in the stimulation of glucose uptake by 3T3-L1 adipocytes


Subject(s)
Adipocytes , Lignans , Ethers , 3T3-L1 Cells , Glucose , Magnetic Resonance Spectroscopy , Plant Extracts , Mass Spectrometry , Plant Stems
13.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 664-673, 2017.
Article in English | WPRIM | ID: wpr-812070

ABSTRACT

Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia.


Subject(s)
Animals , Humans , Mice , 3T3-L1 Cells , Adipocytes , Allergy and Immunology , Adipokines , Genetics , Allergy and Immunology , Cell Hypoxia , Glucose , Metabolism , Hypoxia-Inducible Factor 1, alpha Subunit , Genetics , Allergy and Immunology , Insulin , Metabolism , Insulin Resistance , NF-kappa B , Genetics , Allergy and Immunology , Oxygen , Metabolism , Tumor Necrosis Factor-alpha , Genetics , Allergy and Immunology , Xanthones , Pharmacology
14.
Nutrition Research and Practice ; : 198-205, 2017.
Article in English | WPRIM | ID: wpr-20674

ABSTRACT

BACKGROUND/OBJECTIVES: The anti-diabetic activity of pear through inhibition of α-glucosidase has been demonstrated. However, little has been reported about the effect of pear on insulin signaling pathway in obesity. The aims of this study are to establish pear pomace 50% ethanol extract (PPE)-induced improvement of insulin sensitivity and characterize its action mechanism in 3T3-L1 cells and high-fat diet (HFD)-fed C57BL/6 mice. MATERIALS/METHODS: Lipid accumulation, monocyte chemoattractant protein-1 (MCP-1) secretion and glucose uptake were measure in 3T3-L1 cells. Mice were fed HFD (60% kcal from fat) and orally ingested PPE once daily for 8 weeks and body weight, homeostasis model assessment of insulin resistance (HOMA-IR), and serum lipids were measured. The expression of proteins involved in insulin signaling pathway was evaluated by western blot assay in 3T3-L1 cells and adipose tissue of mice. RESULTS: In 3T3-L1 cells, without affecting cell viability and lipid accumulation, PPE inhibited MCP-1 secretion, improved glucose uptake, and increased protein expression of phosphorylated insulin receptor substrate 1 [p-IRS-1, (Tyr⁶³²)], p-Akt, and glucose transporter type 4 (GLUT4). Additionally, in HFD-fed mice, PPE reduced body weight, HOMA-IR, and serum lipids including triglyceride and LDL-cholesterol. Furthermore, in adipose tissue, PPE up-regulated GLUT4 expression and expression ratio of p-IRS-1 (Tyr⁶³²)/IRS, whereas, down-regulated p-IRS-1 (Ser³⁰⁷)/IRS. CONCLUSIONS: Our results collectively show that PPE improves glucose uptake in 3T3-L1 cells and insulin sensitivity in mice fed a HFD through stimulation of the insulin signaling pathway. Furthermore, PPE-induced improvement of insulin sensitivity was not accompanied with lipid accumulation.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipose Tissue , Blotting, Western , Body Weight , Cell Survival , Chemokine CCL2 , Diet, High-Fat , Ethanol , Glucose , Glucose Transport Proteins, Facilitative , Glucose Transporter Type 4 , Homeostasis , Insulin Receptor Substrate Proteins , Insulin Resistance , Insulin , Lipid Metabolism , Obesity , Pyrus , Triglycerides
15.
Laboratory Animal Research ; : 270-279, 2017.
Article in English | WPRIM | ID: wpr-101370

ABSTRACT

Mulberry (Morus alba) leaves are known to have therapeutic effects on lipid metabolism including lipogenesis, lipolysis and hyperlipidemia. However, novel compounds with strong lipolytic ability among 27 extracts of the mulberry leaves fermented with Cordyceps militaris (EMfCs) have not yet been identified. Therefore, the cAMP concentration and cell viability were measured in the primary adipocytes of SD (Sprague Dawley) rats and 3T3-L1 cells after treatment of 27 EMfCs. Briefly, mulberry leaves powders amended with three different concentrations (0, 25 and 50%) of silkworm pupae (SWP) powder were fermented with 10% C. militaris (v/w) during three different periods (3, 4 and 6 weeks). A total of 27 extracts were obtained from the fermented mulberry leaves powders using three different solvents (dH2O, 50% EtOH and 95% EtOH). Among the 27 EMfCs treated groups, a significant increase in the concentration of cAMP was detected in primary adipocytes treated with 10 extracts when compared with the Vehicle treated group. However, their cAMP concentration did not agree completely with the non-toxicity, although most extracts showed non-toxicity. Furthermore, the concentration of cAMP and level of free glycerol gradually increased in a dose dependent manner (100, 200 and 400 µg/mL) of 4M3-95 contained cordycepin without any significant toxicity. Overall, the results of this study provide strong evidence that 4M3-95 extract derived from EMfCs can stimulate the lipolysis of primary adipocytes at an appropriate concentration and therefore have the potential for use as lipolytic agents to treat obesity.


Subject(s)
Animals , Rats , 3T3-L1 Cells , Adipocytes , Bombyx , Cell Survival , Cordyceps , Glycerol , Hyperlipidemias , Lipid Metabolism , Lipogenesis , Lipolysis , Morus , Obesity , Powders , Pupa , Solvents , Therapeutic Uses
16.
Biol. Res ; 49: 1-11, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950864

ABSTRACT

BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.


Subject(s)
Animals , Mice , Seaweed/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells/drug effects , Chlorella vulgaris/chemistry , Time Factors , Down-Regulation , Gene Expression , Cell Differentiation/drug effects , Up-Regulation , Cell Survival/drug effects , Cells, Cultured , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , 3T3-L1 Cells/physiology , PPAR gamma/analysis , PPAR gamma/drug effects , PPAR gamma/metabolism , Diabetes Mellitus, Type 2/metabolism , Adiponectin/analysis , Adiponectin/metabolism , Glucose Transporter Type 4/analysis , Glucose Transporter Type 4/drug effects , Glucose Transporter Type 4/metabolism , AMP-Activated Protein Kinases/analysis , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism
17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 671-676, 2016.
Article in English | WPRIM | ID: wpr-812579

ABSTRACT

Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipocytes , Cell Biology , Metabolism , Adipogenesis , CCAAT-Enhancer-Binding Protein-alpha , Genetics , Metabolism , Epimedium , Chemistry , Flavonoids , Pharmacology , Lipid Metabolism , PPAR gamma , Genetics , Metabolism , Plant Extracts , Pharmacology , Sterol Regulatory Element Binding Protein 1 , Genetics , Metabolism
18.
Chinese Medical Journal ; (24): 1108-1112, 2016.
Article in English | WPRIM | ID: wpr-290118

ABSTRACT

<p><b>BACKGROUND</b>Adipocytes behave like a rich source of pro-inflammatory cytokines including monocyte chemoattractant protein-1 (MCP-1). Oxidized low-density lipoprotein (oxLDL) participates in the local chronic inflammatory response, and high-density lipoprotein could counterbalance the proinflammatory function of oxLDL, but the underlying mechanism is not completely understood. This study aimed to evaluate the effect of apolipoprotein A-I mimetic peptide L-4F on the secretion and expression of MCP-1 in fully differentiated 3T3-L1 adipocytes induced by oxLDL and to elucidate the possible mechanisms.</p><p><b>METHODS</b>Fully differentiated 3T3-L1 adipocytes were incubated in the medium containing various concentration of L-4F (0-50 μg/ml) with oxLDL (50 μg/ml) stimulated, with/without protein kinase A (PKA) inhibitor H-89 (10 μmol/L) preincubated. The concentrations of MCP-1 in the supernatant, the mRNA expression of MCP-1, the levels of CCAAT/enhancer binding protein α (C/EBPα), and CCAAT/enhancer binding protein β (C/EBPβ) were evaluated. The monocyte chemotaxis assay was performed by micropore filter method using a modified Boyden chamber.</p><p><b>RESULTS</b>OxLDL stimulation induced a significant increase of MCP-1 expression and secretion in 3T3-L1 adipocytes, which were inhibited by L-4F preincubation in a dose-dependent manner. PKA inhibitor H-89 markedly reduced the oxLDL-induced MCP-1 expression, but no further decrease was observed when H-89 was used in combination with L-4F (50 μg/ml) (P > 0.05). OxLDL stimulation showed no significant effect on C/EBPα protein level but increased C/EBPβ protein level in a time-dependent manner. H-89 and L-4F both attenuated C/EBPβ protein level in oxLDL-induced 3T3-L1 adipocytes.</p><p><b>CONCLUSIONS</b>OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.</p>


Subject(s)
Animals , Humans , Mice , 3T3-L1 Cells , CCAAT-Enhancer-Binding Protein-beta , Physiology , Chemokine CCL2 , Genetics , Bodily Secretions , Cyclic AMP , Physiology , Cyclic AMP-Dependent Protein Kinases , Physiology , Lipoproteins, LDL , Pharmacology , Peptides , Pharmacology , Signal Transduction , Physiology
19.
Acta Academiae Medicinae Sinicae ; (6): 271-274, 2016.
Article in English | WPRIM | ID: wpr-289871

ABSTRACT

Objective To explore the effect of the action time of inducers on the differentiation of 3T3-L1 cells to adipocytes. Methods According to the "Cocktail" method,3T3-L1 cells were divided into three groups according to the action time of inducers,with the action time being 2,3 or 4 days,respectively. Cell morphology was observed using inverted microscope and adipose content were detected by Oil red "O" staining and detection of triglyceride. The cell viability was identified by trypan blue staining method. Results The proportion of samples (n=12) with differentiation rate above 80% in group A was 66% (12/18),while the differentiation rate of all the samples (n=18)in group B and group C were above 80%. For the Oil red "O",the OD value at 510 nm in group C was 2.59±0.17,which was significantly higher than that in group A (2.12±0.47;F=6.62,P=0.0001)and group B (2.20±0.17;F=5.15,P=0.0001),while no significant difference was found between group A and group B (F=1.14,P=0.74). As for the triglyceride,the value in group C was (1351.04±119.01)ng/ml,which was significantly higher than that in group A[ (1077.88±272.75)ng/ml;F=6.73,P=0.001] and group B [(1089.38±115.39)ng/ml;F=5.78,P=0.001],while no difference was found between group A and group B (F=0.27,P=0.64). The cell viability in group A,B,and C was (98.3±1.2)%,(98.5±1.8)%,and (98.9±2.1)%,respectively,showing no significant difference (F=0.18,P=0.83). Conclusions The modified procedure for the differentiation of 3T3-L1 cells to adipocytes can increase the differentiation rate and thus may be applied for establishing adipocyte models. The recommended action time is three days.


Subject(s)
Animals , Mice , 3T3-L1 Cells , Adipocytes , Cell Biology , Cell Culture Techniques , Cell Differentiation , Time Factors
20.
Korean Journal of Obesity ; : 68-76, 2016.
Article in Korean | WPRIM | ID: wpr-761653

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor γ (PPARγ) plays a major role in adipocyte differentiation. Testosterone is well known for inhibiting adipocyte metabolism in men. To investigate the inhibitory mechanism of testosterone on adipogenesis, this study evaluated the effects of testosterone on PPARγ expression and activity in adipocytes using in vitro approaches. METHODS: After differentiated 3T3-L1 adipocytes were treated with PPARγ agonist troglitazone and sex hormone testosterone, the effects of testosterone on troglitazone-induced triglyceride accumulation and expression of genes involved in adipogenesis were investigated. We also investigated whether testosterone regulates troglitazone-induced PPARγreporter activity in 3T3-L1 preadipocytes. RESULTS: Testosterone decreased triglyceride accumulation in differentiated 3T3-L1 cells compared with the vehicle treated control group. Testosterone also decreased the expression of PPARγ mRNA as well as PPARγ dependent adipocyte-specific genes, such as adipocyte fatty acid binding protein and tumor necrosis factor α. Moreover, testosterone treatment inhibited triglyceride accumulation, and the expression of PPARγ and adipocyte-specific genes caused by troglitazone in differentiated 3T3-L1 cells. Testosterone decreased troglitazone-induced PPARγ reporter activity. Also, treatment with testosterone led to an inhibition of troglitazone-induced PPARγ reporter activity in PPARγ and androgen receptor (AR) expressed 3T3-L1 preadipocytes. CONCLUSION: These results suggest that testosterone interferes with the actions of PPARγ on adipogensis by an AR-dependent component. In addition, this study may have provided valuable molecular and biological insights regarding testosterone therapy in obese hypogonadal men.


Subject(s)
Humans , Male , 3T3-L1 Cells , Adipocytes , Adipogenesis , Carrier Proteins , In Vitro Techniques , Metabolism , Peroxisomes , Receptors, Androgen , RNA, Messenger , Testosterone , Triglycerides , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL